

Equation of Pair of Straight lines

Basic Level

1.	The values of h for which	ch the equation $3x^2 + 2hxy - 3y^2$	-40x + 30y - 75 = 0 represent	s a pair of straight lines, are[MI	P PE
	(a) 4, 4	(b) 4, 6	(c) 4, -4	(d) 0, 4	
2.	Which of the following	second degree equation represe	ents a pair of straight lines	[MP PET 1990]	
	(a) $x^2 - xy - y^2 = 1$	(b) $-x^2 + xy - y^2 = 1$	(c) $4x^2 - 4xy + y^2 = 4$	(d) $x^2 + y^2 = 4$	
3.	The equation $2y^2 - xy - xy$	$x^2 + 6x - 8 = 0$ represents		[MP PET 1992]	
	(a) A pair of straight lin	nes (b)	A circle	(c) An ellipse (d)	
4.	One of the lines represe	ented by the equation $x^2 + 6xy =$	0 is		
	(a) Parallel to x-axis	(b) Parallel to y -axis	(c) x-axis	(d) <i>y</i> -axis	
5.	The equation $x^2 - 7xy +$	$12y^2 = 0$ represents a		[Ranchi BIT 1991]	
	(a) Circle		(b) Pair of parallel straigh	nt lines	
	(c) Pair of perpendicula lines	ar straight lines	(d) Pair of non-perpend	licular intersecting straight	
6.	The equation $y^2 - x^2 + 2$	2x - 1 = 0 represents		[MNR 1991]	
	(a) A pair of straight lin	nes (b)	A circle	(c) A parabola (d)	
7•	If the equation $\lambda x^2 + 2y^2$	$x^2 - 5xy + 5x - 7y + 3 = 0$ represents	two straight lines, then the	value of λ will be	
	(a) 3	(b) 2	(c) 8	(d) - 8	
8.		e straight lines $x + y = 1$ and $x - y = 1$	y = 4 is		
	(a) $x^2 - y^2 = -4$		(c) $(x+y-1)(x-y-4)=0$		
9.	The value of λ for which	h the equation $x^2 - \lambda xy + 2y^2 + 3x^2$	x - 5y + 2 = 0 may represent a	pair of straight lines is	
				[Kurukshetra CEE 1996]	
	(a) 2	(p) 3	(c) 4	(d) 1	
10.		$y + \lambda = 0$ will represent a pair of		[MP PET 1996]	
	(a) 2	(b) 4	(c) 6	(d) 8	
11.	•	-16y - 3 = 0 represents a pair of		[MP PET 2001]	
	(a) 1	(b) 2	(c) 3	(d) -1	
12.		nes, for a pair of lines, whose e	•		
	(a) $x + 4y = 0$ and $x + 3y$		(b) $2x - 3y = 0$ and $x - 4y = 0$		
	(c) $x - 6y = 0$ and $x - 3y$		(d) $x + 4y = 0$ and $x - 3y = 0$		
13.		$y + 3y^2 - 9x - 7y + k = 0$ represents			
	(a) 4	(b) 2	(c) 1	(d) - 4	
14.	•	-3x + 6y + k = 0 represents a pair	·		
	(a) 9	(b) 1	(c) 0	(d) - 9	

15.	Equation $3x^2 + 7xy + 2y^2$	+5x + 3y + 2 = 0 represents		[UPSEAT 2002]
	(a) Pair of straight lines	s (b) Ellipse	(c) Hyperbola	(d) None of these
16.	For what value of $'p'$, y	$^{2} + xy + px^{2} - x - 2y = 0$ represent	s two straight lines	[UPSEAT 2002]
	(a) 2	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$
17.	If $6x^2 + 11xy - 10y^2 + x +$	31y + k = 0 represents a pair of st	raight lines, then $k =$	[MP PET 1991]
	(a) -15	(b) 6	(c) -10	(d) -4
18.	If the equation $x^2 + y^2 +$	2gx + 2fy + 1 = 0 represents a pair		[Karnataka CET 1999]
	(a) $g^2 - f^2 = 1$	(b) $f^2 - g^2 = 1$	(c) $g^2 + f^2 = 1$	(d) $f^2 + g^2 = 1/2$
19.	The equation $x^2 + kxy +$	$y^2 - 5x - 7y + 6 = 0$ represents a j	pair of straight lines, then <i>k</i>	is
	(a) $\frac{5}{3}$	(b) $\frac{10}{3}$	(c) $\frac{3}{2}$	(d) $\frac{3}{10}$
20.	The equation $2x^2 + 4xy$	$-ky^2 + 4x + 2y - 1 = 0$ represents a	pair of lines. The value of k	is
	(a) $-\frac{5}{3}$	(b) $\frac{5}{3}$	(c) $\frac{1}{3}$	(d) $-\frac{1}{3}$
21.	The equation $4x^2 - 24xy$	$+11y^2 = 0$ represents		[Orissa JEE 2003]
	(a) Two parallel lines	(b) Two perpendicular lines		•
22.	The value of k so that the	e equation $2x^2 + 5xy + 3y^2 + 6x + 6$	7y + k = 0 represents a pair of	of straight lines, is
	(a) 4	(b) 6	(c) 0	(d) 8
23.	$2x^2 - 5xy + y^2 = 0$, is	pair of straight lines throug [MP PET 1990]	-	
	(a) $2x^2 + 5xy + y^2 = 0$	(b) $x^2 + 2y^2 + 5xy = 0$	(c) $x^2 - 5xy + 2y^2 = 0$	(d) $2x^2 + y^2 - 5xy = 0$
24.	The equation $xy + a^2 = ac$	(x + y) represents		[MP PET 1991]
	(a) A parabola lines	(b) A pair of straight lines	(c) An ellipse	(d) Two parallel straight
25.	If the equation $Ax^2 + 2B$	$xy + Cy^2 + Dx + Ey + F = 0$ represen	nts a pair of straight lines, t	then $B^2 - AC$
	(a) < 0	(b) = 0	(c) > 0	(d) None of these
26.		straight lines perpendicular to t		
	(a) $ax^2 - 2hxy + by^2 = 0$	(b) $bx^2 + 2hxy + ay^2 = 0$	(c) $ay^2 - 2hxy + bx^2 = 0$	(d) $ay^2 - bx^2 = 0$
27.	If the equation $ax^2 + 2hx$ MP PET 1988]	$xy + by^2 = 0$ represents two lines	$y = m_1 x$ and $y = m_2 x$, then	[Kurukshetra CEE 1993;
	(a) $m_1 + m_2 = \frac{-2h}{b}$ and $m_1 + m_2 = \frac{-2h}{b}$	$a_1 m_2 = \frac{a}{b}$	(b) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m_2$	$=\frac{-a}{b}$
	(c) $m_1 + m_2 = \frac{2h}{b}$ and m_1	$m_2 = \frac{a}{b}$	(d) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m_2$	=-ab
28.				
	Difference of slopes of t	he lines represented by equation	$\int_0^{\pi} x^2 (\sec^2 \theta - \sin^2 \theta) - 2xy \tan \theta + \frac{1}{2} \sin^2 \theta$	$-y^2\sin^2\theta=0$ is
	(a) 4	(b) 3	(c) 2	(d) None of these
29.	(a) 4		(c) 2	(d) None of these
29.	(a) 4	(b) 3	(c) 2	(d) None of these
29.	(a) 4 If the ratio of gradient $h^2: ab$ is (a) $\frac{1}{3}$	(b) 3 as of the lines represented by [MP PET 1998] (b) $\frac{3}{4}$	(c) 2 $ax^2 + 2hxy + by^2 = 0$ is 1: 3, (c) $\frac{4}{3}$	(d) None of thesethen the value of the ratio(d) 1
29.30.	(a) 4 If the ratio of gradient $h^2:ab$ is (a) $\frac{1}{3}$ If the sum of slopes of t	(b) 3 as of the lines represented by [MP PET 1998]	(c) 2 $ax^2 + 2hxy + by^2 = 0$ is 1: 3, (c) $\frac{4}{3}$	(d) None of thesethen the value of the ratio(d) 1
-	(a) 4 If the ratio of gradient $h^2: ab$ is (a) $\frac{1}{3}$ If the sum of slopes of then the value of h is	(b) 3 as of the lines represented by [MP PET 1998] (b) $\frac{3}{4}$ the pair of lines represented by	(c) 2 $ax^2 + 2hxy + by^2 = 0$ is 1: 3, (c) $\frac{4}{3}$ $4x^2 + 2hxy - 7y^2 = 0$ is equal	(d) None of thesethen the value of the ratio(d) 1to the product of the slopes,
-	(a) 4 If the ratio of gradient $h^2: ab$ is (a) $\frac{1}{3}$ If the sum of slopes of then the value of h is (a) -6	(b) 3 as of the lines represented by [MP PET 1998] (b) $\frac{3}{4}$	(c) 2 $ax^2 + 2hxy + by^2 = 0$ is 1: 3, (c) $\frac{4}{3}$ $4x^2 + 2hxy - 7y^2 = 0$ is equal (c) -4	(d) None of thesethen the value of the ratio(d) 1to the product of the slopes,(d) 4

				Pair of Straight Lines 71
	(a) $h^2 = ab$	(b) $h = a + b$	(c) $8h^2 = 9ab$	(d) $9h^2 = 8ab$
32.	If the slope of one	line of the pair of lines repre	esented by $ax^2 + 4xy + y^2 = 0$ is	3 times the slope of the other line,
	then a is	[DCE 1999]		
	(a) 1	(b) 2	(c) 3	(d) 4
33.	If the slope of one	of the lines given by $ax^2 + 2hx$	$xy + by^2 = 0$ is 5 times the other	r, then
	(a) $5h^2 = ab$	(b) $5h^2 = 9ab$	(c) $9h^2 = 5ab$	(d) $h^2 = ab$
34.	The value of k such	1 that $3x^2 - 11xy + 10y^2 - 7x + 1$	3y + k = 0 may represent a pair	of straight lines, is
	(a) 3	(b) 4	(c) 6	(d) 8
35∙	$If x^2 - kxy + y^2 + 2y$	+2 = 0 denotes a pair of strai	ght lines, then k	=
	(a) 2	(b) $\frac{1}{\sqrt{2}}$	(c) $2\sqrt{2}$	(d) $\sqrt{2}$
36.	The equation $4x^2 +$	$+mxy - 3y^2 = 0$ represents a pa	ir of real and distinct lines if	
	(a) $m \in R$	(b) $m \in (3,4)$	(c) $m \in (-3,4)$	(d) $m > 4$
3 7•	Lines represented	by $9x^2 + y^2 + 6xy - 4 = 0$ are		[EAMCET 1988]
	(a) Coincident	(b) Parallel but not co	incident (c) Not parallel	(d) Perpendicular
88.	If $kx^2 + 10xy + 3y^2 -$	-15x - 21y + 18 = 0 represents a	a pair of straight lines, then k	= [Kurukshetra CEE 1982]
	(a) 3	(b) 4	(c) -3	(d) None of these
39.	Equation of pair $3x^2 - 7xy - 2y^2 = 0 i$	=	through (1, 1) and perpe	endicular to the pair of lines
				[Roorkee 1984: MNR 198
	(a) $2x^2 + 7xy - 11x$	+6=0	(b) $2(x-1)^2 + 7(x-1)(x-1)$	$(y-1) - 3y^2 = 0$
	(c) $2(x-1)^2 + 7(x-1)^2$	$1)(y-1) + 3(y-1)^2 = 0$	(d) None of these	
	If the lines represe		2	2 2 2 2
40.	if the inies represe	ented by the equation $2x^2 - 3x$	$xy + y^2 = 0$ make angles α and β	β with x-axis, then $\cot^2 \alpha + \cot^2 \beta =$
ţo.	(a) 0	ented by the equation $2x^2 - 3x$ (b) $\frac{3}{2}$	$xy + y^2 = 0$ make angles α and α	B with x-axis, then $\cot^2 \alpha + \cot^2 \beta =$ (d) $\frac{5}{4}$
_	(a) O	(b) $\frac{3}{2}$	(c) $\frac{7}{4}$	~
_	(a) O	2	(c) $\frac{7}{4}$	(d) $\frac{5}{4}$
ļ 1.	(a) 0 If one of the lines § (a) -3	(b) $\frac{3}{2}$ given by $6x^2 - xy + 4cy^2 = 0$ is (b) -1	(c) $\frac{7}{4}$ 3x + 4y = 0, then c equals (c) 3	(d) $\frac{5}{4}$ [AIEEE 2004]
ļ 1.	(a) 0 If one of the lines § (a) -3	(b) $\frac{3}{2}$ given by $6x^2 - xy + 4cy^2 = 0$ is	(c) $\frac{7}{4}$ 3x + 4y = 0, then c equals (c) 3	(d) $\frac{5}{4}$ [AIEEE 2004]
10. 11. 12.	(a) 0 If one of the lines $\{(a) -3\}$ If $ax^2 - y^2 + 4x - y = (a) -16$	(b) $\frac{3}{2}$ given by $6x^2 - xy + 4cy^2 = 0$ is (b) -1 = 0 represents a pair of lines, (b) 16	(c) $\frac{7}{4}$ 3x + 4y = 0, then c equals (c) 3 then $a =$	(d) $\frac{5}{4}$ [AIEEE 2004] (d) 1 [Karnataka CET 2004] (d) - 4

44.	The equation	$\sqrt{\left(x-2\right)^2+y^2}$	$+\sqrt{(x+2)^2+y^2}$	= 4 represents a

(a) Circle

(b) Pair of straight lines

(c) Parabola

(d) Ellipse

45. The locus of the point P(x, y) satisfying the relation $\sqrt{(x-3)^2 + (y-1)^2} + \sqrt{(x+3)^2 + (y-1)^2} = 6$ is a

(a) Straight line

(b) Pair of straight lines

(c) Circle

(d) Ellipse

46. If the equation $12x^2 + 7xy - py^2 - 18x + qy + 6 = 0$ represents a pair of perpendicular straight lines, then

(a) p = 12, q = 1

(b) p = 1, q = 12

(c) p = -1, q = 12

(d) p = 1, q = -12

47. The equation of the pair of straight lines parallel to x-axis and touching the circle $x^2 + y^2 - 6x - 4y - 12 = 0$ is [Kerala (En

(a)
$$y^2 - 4y - 21 = 0$$

(b)
$$y^2 + 4y - 21 = 0$$

(c)
$$y^2 - 4y + 21 = 0$$

(c)
$$y^2 - 4y + 21 = 0$$
 (d) $y^2 + 4y + 21 = 0$

Two pairs of straight lines have the equations $y^2 + xy - 12x^2 = 0$ and $ax^2 + 2hxy + by^2 = 0$. One line will be 48. common among them if

(a)
$$a = -3(2h + 3b)$$

(b)
$$a = 8(h - 2b)$$

(c)
$$a = 2(b + h)$$

(d)
$$a = -3(b + h)$$

If $u = a_1x + b_1y + c_1 = 0$, $v = a_2x + b_2y + c_2 = 0$ and $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, then curve u + kv = 0 is 49.

[MNR 1987]

(a) A line represented by u (b)

(d)

If one of the line represented by the equation $ax^2 + 2hxy + by^2 = 0$ is coincident with one of the line represented 50. by $a'x^2 + 2h'xy + b'y^2 = 0$, then

(a)
$$(ab'-a'b)^2 = 4(ah'-a'h)(hb'-h'b)$$

(b)
$$(ab'+a'b)^2 = 4(ah'-a'h)(hb'-h'b)$$

(c)
$$(ab'-a'b)^2 = (ah'-a'h)(hb'-h'b)$$

(d) None of these

Angle between the Pair of Lines

Basic Level

The angle between the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ is given by 51.

(a)
$$\tan \theta = \frac{2(h^2 - ab)}{(a+b)}$$

(a)
$$\tan \theta = \frac{2(h^2 - ab)}{(a+b)}$$
 (b) $\tan \theta = \frac{2\sqrt{(h^2 - ab)}}{(a+b)}$ (c) $\tan \theta = \frac{2(h^2 - ab)}{\sqrt{a+b}}$ (d) $\tan \theta = \frac{2\sqrt{h^2 + ab}}{(a+b)}$

(c)
$$\tan \theta = \frac{2(h^2 - ab)}{\sqrt{a+b}}$$

(d)
$$\tan \theta = \frac{2\sqrt{h^2 + ab}}{(a+b)}$$

The angle between the pair of straight lines $x^2 - y^2 - 2y - 1 = 0$, is 52.

If the angle 2θ is acute, then the acute angle between $x^2(\cos\theta - \sin\theta) + 2xy\cos\theta + y^2(\cos\theta + \sin\theta) = 0$ is [EAMCET 2002] 53.

(b)
$$\frac{\theta}{3}$$

(d)
$$\frac{\theta}{2}$$

The angle between the pair of lines $2x^2 + 5xy + 2y^2 + 3x + 3y + 1 = 0$ is 54.

[EAMCET 1994]

(a)
$$\cos^{-1}\left(\frac{4}{5}\right)$$

(b)
$$\tan^{-1} \left(\frac{4}{5} \right)$$

(d)
$$\frac{\pi}{2}$$

- The equation $x^2 3xy + \lambda y^2 + 3x 5y + 2 = 0$ when λ is a real number, represents a pair of straight lines. If θ is 55. the angle between the lines, then $\csc^2\theta$ =

(c) 10

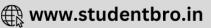
- (d) 100
- The equation $12x^2 + 7xy + ay^2 + 13x y + 3 = 0$ represents a pair of perpendicular lines. Then the value of 'a' is [Karnataka CE'] 56.

The angle between the lines $x^2 + 4xy + y^2 = 0$ is 57.

[Karnataka CET 2001]

- (a) 60°

(c) 30°


- (d) 45°
- If the angle between the two lines represented by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is $\tan^{-1} m$, then m = [MNR 1993]58.

(b) 1

(d) 7

- Pair of straight lines perpendicular to each other represented by 59.
 - (a) $2x^2 = 2y(2x + y)$ (b) $x^2 + y^2 + 3 = 0$ (c) $2x^2 = y(2x + y)$ (d) $x^2 = 2(x y)$

The angle between the pair of straight lines $x^2 + 4y^2 - 7xy = 0$, is 60. [MNR 1983; Kurukshetra CEE 1999]

	(a) $\tan^{-1} \left(\frac{1}{3} \right)$	(b) tan ⁻¹ (3)	(c) $\tan^{-1}\left(\frac{\sqrt{33}}{5}\right)$	(d) $\tan^{-1}\left(\frac{5}{\sqrt{33}}\right)$
61.	The angle between the	pair of straight lines $y^2 \sin^2 \theta$	$\theta - xy \sin^2 \theta + x^2 (\cos^2 \theta - 1) = 1$, is	[MNR 1985; UPSEAT 2000
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c) $\frac{2\pi}{3}$	(d) None of these
62.	The angle between the	pair of lines given by equatio	$x^2 + 2xy - y^2 = 0$, is	[MNR 1990]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) o
63.	Acute angle between th	he lines represented by $(x^2 + y)$	$(2)\sqrt{3} = 4xy$ is	
	(a) $\pi/6$	(b) $\pi/4$	(c) $\pi/3$	(d) None of these
64.	The angle between the	lines given by $x^2 - y^2 = 0$ is		[MP PET 1999]
	(a) 15°	(b) 45°	(c) 75°	(d) 90°
65.	The angle between the	lines $xy = 0$ is		[MP PET 1990, 92]
	(a) 45°	(b) 60°	(c) 90°	(d) 180°
66.	The angle between the	lines represented by the equa	ation $4x^2 - 24xy + 11y^2 = 0$ are	
	(a) $\tan^{-1} \left(\frac{3}{4} \right), \tan^{-1} \left(-\frac{3}{4} \right)$	(b) $\tan^{-1} \left(\frac{1}{3} \right), \tan^{-1} \left(\frac{-1}{3} \right)$	(c) $\tan^{-1}\left(\frac{4}{3}\right)$, $\tan^{-1}\left(-\frac{4}{3}\right)$	(d) $\tan^{-1}\left(\frac{1}{2}\right)$, $\tan^{-1}\left(-\frac{1}{2}\right)$
67.	Condition that the two	lines represented by the equa	ation $ax^2 + 2hxy + by^2 = 0$ to be	perpendicular is
			[Kur	ukshetra CEE 1998; MP PET
2001	(a) $ab = -1$	(b) $a = -b$	(c) $a = b$	(d) $ab = 1$
68.		esented by the equation $9x^2 -$		(d) $uv - 1$
00.	(a) Coincident	(b) Perpendicular	(c) Parallel	(d) Inclined at an angle of
45°	(u) comeracine	(b) Terpendicular	(c) Turuner	(a) memed at an angle of
69.	The nature of straight l	lines represented by the equa	tion $4x^2 + 12xy + 9y^2 = 0$ is	[MP PET 1988]
	(a) Real and coincident	t (b) Real and different	(c) Imaginary and differ	ent (d) None of these
7 0.	The equation $x^2 + ky^2 +$	-4xy = 0 represents two coinci	dent lines, if $k =$	
	(a) 0	(b) 1	(c) 4	(d) 16
71.			points of intersection of t	he line $2x + y = 1$ and curve
	$3x^2 + 4xy - 4x + 1 = 0 \text{ inc}$	clude an angle		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{6}$
72.	If the acute angles between	ween the pairs of lines $3x^2$ –	$7xy + 4y^2 = 0$ and $6x^2 - 5xy + y^2$	2 = 0 be θ_{1} and θ_{2} respectively,
	(a) $\theta_1 = \theta_2$	(b) $\theta_1 = 2\theta_2$	(c) $2\theta_1 = \theta_2$	(d) None of these
73.	The point of lines repre	esented by $3ax^2 + 5xy + (a^2 - 2)$	$y^2 = 0$ and perpendicular to ea	ch other for
	(a) Two values of a	(b) For all values of a	(c) For one value of a	(d) For no values of a
		Advan	ce Level	

CLICK HERE Get More Learning Materials Here:

The figure formed by the lines $x^2 + 4xy + y^2 = 0$ and x - y = 4, is

(a) A right angled triangle (b)

74.

An isosceles triangle

(c) An equilateral triangle(d)

75.	The equation of the	he pair of straig	nt lines, each of	which makes an angle	α with the line $y = x$, is

(a)
$$x^2 + 2xy \sec 2\alpha + y^2 = 0$$

(b)
$$x^2 + 2xy\csc 2\alpha + y^2 = 0$$

(c)
$$x^2 - 2xy\csc 2\alpha + y^2 = 0$$

$$x^2 - 2xy \sec 2\alpha + y^2 = 0$$

The combined equation of the lines l_1, l_2 is $2x^2 + 6xy + y^2 = 0$ and that of the lines m_1, m_2 is $4x^2 + 18xy + y^2 = 0$. If 76. the angle between l_1 and m_2 be α then the angle between l_2 and m_1 will be

(a)
$$\frac{\pi}{2} - \alpha$$

(c)
$$\frac{\pi}{4} + \alpha$$

If θ_1 and θ_2 are the angles which the lines $x^2(\tan^2\theta + \cos^2\theta) - 2xy \tan\theta + y^2\sin^2\theta = 0$ make with the axis of x, then $\tan \theta_1 - \tan \theta_2$ is equal to

(a)
$$\cos 2\theta$$

(b)
$$2\cos\theta\sin\theta$$

Bisectors of the Angles between the Lines

Basic Level

The combined equation of bisectors of angles between coordinate axes, is

(a)
$$x^2 + y^2 = 0$$

(b)
$$x^2 - y^2 = 0$$

(c)
$$xy = 0$$

(d)
$$x + y = 0$$

The equation of the bisectors of the angle between the lines represented by the equation $x^2 - y^2 = 0$, is 79.

(a)
$$x = 0$$

(b)
$$y = 0$$

(c)
$$xy = 0$$

If y = mx be one of the bisectors of the angle between the lines $ax^2 - 2hxy + by^2 = 0$, then 80.

(a)
$$h(1+m^2)+m(a-b)=0$$

(b)
$$h(1-m^2) + m(a+b) = 0$$

(a)
$$h(1+m^2)+m(a-b)=0$$
 (b) $h(1-m^2)+m(a+b)=0$ (c) $h(1-m^2)+m(a-b)=0$

(d)
$$h(1+m^2)+m(a+b)=0$$

The combined equation of the bisectors of the angle between the lines represented by $(x^2 + y^2)\sqrt{3} = 4xy$ is [MP PET 1992 81.

(a)
$$y^2 - x^2 = 0$$

(b)
$$xy = 0$$

(c)
$$x^2 + y^2 = 2xy$$

(c)
$$x^2 + y^2 = 2xy$$
 (d) $\frac{x^2 - y^2}{\sqrt{3}} = \frac{xy}{2}$

One bisector of the angle between the lines given by $a(x-1)^2 + 2h(x-1)y + by^2 = 0$ is 2x + y - 2 = 0. The other 82. bisector is

(a)
$$x - 2y + 1 = 0$$

(b)
$$2x + y - 1 = 0$$

(c)
$$x + 2y - 1 = 0$$

(d)
$$x - 2y - 1 = 0$$

Advance Level

If the equation $ax^2 + 2hxy + by^2 = 0$ has the one line as the bisector of angle between the coordinate axes, then 83. [Bihar CEE 1990; Roorkee

1992]

(a)
$$(a-b)^2 = h^2$$

(b)
$$(a+b)^2 = h^2$$

(c)
$$(a-b)^2 = 4h^2$$

(d)
$$(a+b)^2 = 4h^2$$

If the bisectors of the angles between the pairs of lines given by the equation $ax^2 + 2hxy + by^2 = 0$ and $ax^2 + 2hxy + by^2 + \lambda(x^2 + y^2) = 0$ be coincident, then $\lambda =$

If the bisectors of the angles of the lines represented by $3x^2 - 4xy + 5y^2 = 0$ and $5x^2 + 4xy + 3y^2 = 0$ are same, then 85. the angle made by the lines represented by first with the second, is

If pairs of straight lines $x^2 - 2mxy - y^2 = 0$ and $x^2 - 2mxy - y^2 = 0$ be such that each pair bisects the angle between 86. the other pair, then mn =1991; UPSEAT 2001]

(a) 1

(b) -1

(c) o

(d) $-\frac{1}{2}$

If the lines represented by $x^2 - 2pxy - y^2 = 0$ are rotated about the origin through an angle θ , one in clockwise 87. direction and other in anti -clockwise direction, then the equation of the bisectors of the angle between the lines in the new position is

(a) $px^2 + 2xy - py^2 = 0$

(b) $px^2 + 2xy + py^2 = 0$

(c) $x^2 - 2pxy + y^2 = 0$

(d) None of these

If $r(1-m^2)+m(p-q)=0$, then a bisector of the angle between the lines represented by the equation 88. $px^{2} - 2rxy + qy^{2} = 0$ is

(a) y = x

(b) y = -x

(c) y = mx

(d) my = x

Point of intersection of the Lines

Basic Level

If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the *y*-axis, then 89.

[AIEEE 2002]

(a) $2fgh = bg^2 + ch^2$ (b) $bg^2 \neq ch^2$

(c) abc = 2fgh

(d) None of these

The point of intersection of the lines represented by equation $2(x+2)^2 + 3(x+2)(y-2) - 2(y-2)^2 = 0$ is 90.

(a) (2,2)

(b) (-2, -2)

(c) (-2,2)

(d) (2,-2)

Advance Level

The equations to a pair of opposite sides of a parallelogram are $x^2 - 5x + 6 = 0$ and $y^2 - 6y + 5 = 0$. The equations 91. to its diagonals are

(a) x + 4y = 13 and y = 4x - 7

(b) 4x + y = 13 and 4y = x - 7

(c) 4x + y = 13 and y = 4x - 7

- (d) y-4x=13 and y+4x=7
- 92. The circumcentre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is

(a) (0,0)

(b) (-2, -2)

(c) (-1,-1)

(d) (-1,-2)

If the equations of opposite sides of a parallelogram are $x^2 - 7x + 6 = 0$ and $y^2 - 14y + 40 = 0$, then the equation of 93. its one diagonal is

(a) 6x + 5y + 14 = 0

(b) 6x - 5y + 14 = 0

(c) 5x + 6y + 14 = 0

(d) 5x - 6y + 14 = 0

The limiting position of the point of intersection of the straight lines 3x + 5y = 1 and $(2+c)x + 5c^2y = 1$ as $c \to 1$ is 94.

(a) $\left(\frac{2}{5}, \frac{-1}{25}\right)$

(b) $\left(\frac{1}{2}, -\frac{1}{10}\right)$

(c) $\left(\frac{3}{8}, \frac{-1}{40}\right)$

(d) None of these

If two sides of a triangle are represented by $x^2 - 7xy + 6y^2 = 0$ and the centroid is (1, 0), then the equation of 95. third side is

(a) 2x + 7y + 3 = 0

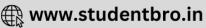
(b) 2x - 7y + 3 = 0

(c) 2x + 7y - 3 = 0

(d) 2x - 7y - 3 = 0

If the lines $ax^2 + 2hxy + by^2 = 0$ represents the adjacent sides of a parallelogram, then the equation of second 96. diagonal if one is lx + my = 1, will be

(a) (am + hl)x = (bl + hm)y (b) (am - hl)x = (bl - hm)y


(c) (am - hl)x = (bl + hm)y

(d) None of these

Equation of lines joining the origin to the point of intersection of a curve and a Line, Distance between the

Basic Level

Get More Learning Materials Here:

 $3x^2 + 5xy - 3y^2 + 2x + 3y = 0$, are

(c) Inclined at 45° to each other

The distance between the parallel lines $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is

(b) $\frac{2}{\sqrt{10}}$ (c) $\frac{4}{\sqrt{10}}$

(b) $\frac{7}{2\sqrt{5}}$ (c) $\frac{\sqrt{7}}{5}$

(a) Parallel to each other

[UPSEAT 2001]

97.

99.

100.	The equation of second distance between them i	d degree $x^2 + 2\sqrt{2}xy + 2y^2 + 4x - 3$	$+4\sqrt{2}y+1=0$ represents a	pair of straight lines. The
	(a) 4	(b) $\frac{4}{\sqrt{3}}$	(c) 2	(d) $2\sqrt{3}$
101.	If the straight lines j	oining origin to the points	of intersections of the li	ine $x + y = 1$ with the curve
	$x^2 + y^2 + x - 2y - m = 0$ are	e perpendicular to each other, t	hen the value of m should be	oe .
	(a) 0	(b) 1/2	(c) 1	(d) - 1
102.	The lines joining the poorigin are perpendicular	ints of intersection of the curv , then	e $(x-h)^2 + (y-k)^2 - c^2 = 0$ an	d the line $kx + hy = 2hk$ to the
	(a) $c = h \pm k$	(b) $c^2 = h^2 + k^2$	(c) $c^2 = (h+k)^2$	(d) $4c^2 = h^2 + k^2$
103.	The equation of pair of l	ines joining origin to the points	of intersection of $x^2 + y^2 =$	9 and $x + y = 3$ is
	(a) $(x+y)^2 = 9$	(b) $x^2 + (3-x)^2 = 9$	(c) $xy = 0$	(d) $(3-x)^2 + y^2 = 9$
104.	The acute angle former $x^2 + y^2 - 2x - 1 = 0$ and $x = 0$	d between the lines joining t $y = 1$, is	he origin to the points of	f intersection of the curves
	(a) $\tan^{-1}\left(-\frac{1}{2}\right)$	(b) $\tan^{-1}(2)$	(c) $\tan^{-1} \left(\frac{1}{2} \right)$	(d) 60°
105.	The lines joining the ori mutually perpendicular,	gin to the points of intersectio if	n of the line $y = mx + c$ and	the circle $x^2 + y^2 = a^2$ will be
	(a) $a^2(m^2+1)=c^2$	(b) $a^2(m^2-1)=c^2$	(c) $a^2(m^2+1)=2c^2$	(d) $a^2(m^2-1)=2c^2$
106.	The angle between lines $x^2 + y^2 = 4$ is	s joining the origin to the poin	nts of intersection of the li	ine $x\sqrt{3} + y = 2$ and the curve
				[Roorkee 1998]
	(a) $\pi/6$	(b) $\pi/4$	(c) $\pi/3$	(d) $\pi/2$
		Advance I	Level	

107. The pair of lines joining the origin to the points of intersection of the curves $ax^2 + 2hxy + by^2 + 2gx = 0$ and

(c) gg' = (a+b)(a'+b')

 $a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$ will be at right angles to one another if

The lines joining the origin to the points of intersection of the line 3x - 2y = 1 and the curve

The equation $8x^2 + 8xy + 2y^2 + 26x + 13y + 15 = 0$ represents a pair of straight lines. The distance between them is

(b) Perpendicular to each other

None of these

(d) $\sqrt{10}$

[EAMCET 1994]

(d) None of these

(a) g(a'+b') = g'(a+b) (b) g(a+b) = g'(a'+b')

- 108. The square of distance between the point of intersection of the lines represented by the equation $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ and origin, is

 - (a) $\frac{c(a+b)-f^2-g^2}{ab-h^2}$ (b) $\frac{c(a-b)+f^2+g^2}{\sqrt{ab-h^2}}$ (c) $\frac{c(a+b)-f^2-g^2}{ab+h^2}$
- 109. If the portion of the line lx + my = 1 falling inside the circle $x^2 + y^2 = a^2$ subtends an angle of 45° at the origin,
 - (a) $4[a^2(l^2+m^2)-1]=a^2(l^2+m^2)$

(b) $4[a^2(l^2+m^2)-1]=a^2(l^2+m^2)-2$

(c) $4[a^2(l^2+m^2)-1] = [a^2(l^2+m^2)-2]^2$

(d) None of these

Miscellaneous problems

Basic Level

- product of perpendiculars drawn from the origin to the lines represented the equation $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ will be
- (a) $\frac{ab}{\sqrt{a^2 b^2 + 4h^2}}$ (b) $\frac{bc}{\sqrt{a^2 b^2 + 4h^2}}$ (c) $\frac{ca}{\sqrt{(a^2 + b^2) + 4h^2}}$ (d) $\frac{c}{\sqrt{(a b)^2 + 4h^2}}$
- A curve with equation of the form $y = ax^4 + bx^3 + cx + d$ has zero gradient at the point (0,1) and also touches the x-axis at the point (-1,0). Then the values of x for which the curve has negative gradients are
 - (a) x > -1
- (b) x < 1

- (c) x < -1
- (d) $-1 \le x \le 1$

Advance Level

- 112. Two of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Continuous and Section 12].
 - (a) $(b+d)(ad+be)+(e-a)^2(a+c+e)=0$

(b) $(b+d)(ad+be)+(e+a)^2(a+c+e)=0$

(c) $(b-d)(ad-be)+(e-a)^2(a+c+e)=0$

- (d) $(b-d)(ad-be)+(e+a)^2(a+c+e)=0$
- Let PQR be a right angled isosceles triangle, right angled at P(2,1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is
 - (a) $3x^2 3y^2 + 8xy + 20x + 10y + 25 = 0$

(b) $3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$

(c) $3x^2 - 3y^2 + 8xy + 10x + 15y + 20 = 0$

- (d) $3x^2 3y^2 8xy 10x 15y 20 = 0$
- The area (in square units) of the quadrilateral formed by the two pairs of lines $l^2x^2 m^2y^2 n(lx + my) = 0$ and $l^2x^2 - m^2y^2 + n(lx - my) = 0$ is [EAMCET 2003]
 - (a) $\frac{n^2}{2|lm|}$
- (b) $\frac{n^2}{|m|}$

- (c) $\frac{n}{2 \mid lm \mid}$
- (d) $\frac{n^2}{4 \mid lm \mid}$
- Two lines represented by the equation $x^2 y^2 2x + 1 = 0$ are rotated about the point (1, 0), the line making the bigger angle with the positive direction of the x-axis being turned by 45° in the clockwise sense and the other line being turned by 15° in the anticlockwise sense. The combined equation of the pair of lines in their new positions is
 - (a) $\sqrt{3}x^2 xy + 2\sqrt{3}x y + \sqrt{3} = 0$

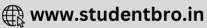
(b) $\sqrt{3}x^2 - xy - 2\sqrt{3}x + y + \sqrt{3} = 0$

(c) $\sqrt{3}x^2 - xy - 2\sqrt{3}x + \sqrt{3} \equiv 0$

(d) None of these

- **116.** The combined equation of three sides of a triangle is $(x^2 y^2)(2x + 3y 6) = 0$. If (-2, a) is an interior point and (b, a)1) is an exterior point of the triangle, then
 - (a) $2 < a < \frac{10}{3}$
- (b) $-2 < a < \frac{10}{3}$
- (c) $-1 < b < \frac{9}{2}$ (d) -1 < b < 1
- 117. The diagonals of a square are along the pair of lines whose equation is $2x^2 3xy 2y^2 = 0$. If (2, 1) is a vertex of the square, then another vertex consecutive to it can be

- (d) (-1, -4)
- 118. The equation $x^3 6x^2y + 11xy^2 6y^3 = 0$ represent three straight lines passing through the origin, the slopes of which form an
 - (a) A.P.
- (b) G.P.


(c) H.P.

- (d) None of these
- 119. If P_1, P_2 denote the length of the perpendiculars from the point (2,3) on the lines given by $15x^2 + 31xy + 14y^2 = 0$ then

 - (a) $P_1 + P_2 = \frac{31}{14}$ (b) $|P_1 P_2| = \frac{31}{\sqrt{74}} \frac{12}{\sqrt{13}}$ (c) $P_1 P_2 = \frac{372}{\sqrt{962}}$ (d) $P_1 P_2 = \frac{15}{14}$
- 120. The equation of the locus of feet of perpendicular drawn from the origin to the line passing through a fixed
- (a) $x^2 + y^2 ax by = 0$ (b) $x^2 + y^2 + ax + by = 0$ (c) $x^2 + y^2 2ax 2by = 0$ (d) None of these

Assianment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	С	а	d	d	а	b	С	b	d	b	d	а	d	а	С	а	С	b	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	а	b	b	d	С	а	С	С	b	С	С	b	b	d	а	b	а	d	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	b	а	b	b	а	а	a,b	а	а	b	а	С	а	С	С	а	а	а	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	С	а	d	С	С	b	а	а	С	а	а	а	С	d	d	С	b	С	С
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
а	d	d	d	d	b	а	С	а	С	С	С	b	а	d	b	b	b	b	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	С	b	С	С	а	а	С	d	С	а	b	а	b	a,d	a,c	С	b,c	а

